Modifying Children's Tasks into Cognitively Demanding Tasks for Preservice Elementary Teachers

Task중 Masters

Rachael M. Welder, Western Washington University Jennifer Tobias, Illinois State University Ziv Feldman, Boston University
Amy Hillen, Kennesaw State University Dana Olanoff, Widener University Eva Thanheiser, Portland State University

Tasks \& task design

"What students learn is largely defined by the tasks they are given."
(Hiebert \& Wearne, 1993, p. 395)

- Tasks play a key role in teacher education by providing meaningful interventions to enhance knowledge and practices of teachers (Chapman, 2013)
\square Improving the quality of mathematical tasks used with PSTs will improve the overall instruction in K12 classrooms (Watson \& Mason, 2007)

Framework for task development

Tobias, Olanoff, Hillen, Welder, Feldman, \& Thanheiser (2014)
 Iterative cycle of task design to guide MHEs in utilizing children's tasks in content courses with PSIs

Tobias, J. M., Olanoff, D., Hillen, A., Welder, R. M., Feldman, Z., \& Thanheiser, E. (2014). Research-based modifications of elementary school tasks for use in teacher preparation. In K. King (Ed.), Annual Perspectives in Mathematics Education: Using Research to Improve Instruction (pp. 181-192). Reston, VA: NCTM.

Task modifications

Cognitive demand refers to the kind of thinking processes involved in solving a task.
(Stein, Smith, Henningsen, \& Silver (2009)
\square Tasks that are high-level for children are not necessarily high-level for PSTs

■ Children's tasks may need to be modified to provide PSTs an appropriate level of challenge

Children's task: Comparing fractions

Russell, S. J., et al. (2008). Investigations in number, data, and space student activity book, Grade 5 (2 ${ }^{\text {nd }}$ ed.), p. 21. Glenview, IL: Scott Foresman.

Which Is Greater? (page 1 of 2)

Solve the problems below and explain or show how you determined the answer.

1. Which is greater? $\frac{7}{10}$ or $\frac{3}{5}$
2. Which is greater?
$\frac{7}{8}$
or
$\frac{9}{10}$
3. Which is greater?
$\frac{4}{3}$
or
$\frac{3}{4}$
4. Which is greater?
$\frac{3}{8}$
or
$\frac{1}{3}$

Analysis of children's task

Problem	Strategies Elicited	Connections to CCSSM
$1.7 / 10$ vs. $3 / 5$	Common Denominators/Same-Size-Pieces $3 / 5=6 / 10$. Because $6 / 10$ represents fewer pieces of size $1 / 10$ than $7 / 10$ does, $6 / 10<7 / 10$.	$3 . N F .3 \mathrm{~d}$ $4 . N F .2$
$2.7 / 8$ vs. $9 / 10$	Comparing to a Benchmark of 1 $7 / 8$ is $1 / 8$ less than $1 ; 9 / 10$ is $1 / 10$ less than 1. Because eighths are larger pieces than tenths, $1 / 8>1 / 10$. So $7 / 8$ is "missing more" than $9 / 10 ;$ thus $7 / 8<9 / 10$.	3.NF.3d $4 . N F .2$
$3.4 / 3$ vs. $3 / 4$	Comparing to a Benchmark of 1 Given that $3 / 3=1,4 / 3>1 ;$ given that $4 / 4=1,3 / 4<1$. Then $4 / 3>$ $1>3 / 4$, which means $4 / 3>3 / 4$.	4.NF.2
$4.3 / 8$ vs. $1 / 3$	Common Numerators/Same-Number-of-Pieces $1 / 3=3 / 9.3 / 8$ and $3 / 9$ each have the same number of pieces (3). Because eighths are larger pieces than ninths, $3 / 8>3 / 9$.	3.NF.3d

Modifications to Increase Cognitive Demand

Discourage familiar, algorithmic procedures

PSTs mainly rely on common denominators \& converting to decimals/percents
(Livy, 2011; Olanoff, Lo, \& Tobias, 2014;Yang, Reys, \& Reys, 2009)

Develop multiple fraction comparison strategies based on reasoning

Create opportunities to reason about:

- fractions greater than one
- benchmark values other than one

Modifications of problems

Which Is Greater? ${ }_{(p a g e} 1$ of 2)

Solve the problems below and explain or show how you determined the answer.

1. Which is greater? $\frac{7}{10}$ or $\frac{3}{5}$
2. Which is greater? $\frac{7}{8}$ or $\frac{9}{10}$
3. Which is greater? $\frac{4}{3}$ or $\frac{3}{4}$
4. Which is greater?
$\frac{3}{8}$
or
$\frac{1}{3}$

1) $7 / 10$ vs. $8 / 9$
2) $8 / 9$ vs. $12 / 13$
3) $24 / 7$ vs. $34 / 15$
4) $3 / 7$ vs. $6 / 11$

Modifications of problems

Distance from a Benchmark Value - BVD [1]

Modifications of problems

Benchmark Value Between - BVB [3]

Modifications of problems

Same Number of Pieces - SNP

Modifications of problems

Greater Number of Larger Pieces - GLP

Which Is Greater? (poge lof 2)
Solve the problems below and explain or show how you determined the answer.

1. Which is greater?

2. Which is greater?
$\frac{7}{8}$ or $\frac{9}{10}$

Encourage additional strategy:
2) $8 / 9$ vs. $12 / 13$
3. Which is greater? $\frac{4}{3}$ or $\frac{3}{4}$
4. Which is greater?
$\frac{3}{8}$
or
$\frac{1}{3}$

Modifications of problems

Modifications of instructions

Which 1 G Greater? (page 1 of 2)

Solve the problems below and explain or show how you determined the answer.
"In this task, children compare fractions using methods of their choice, including but not limited to drawing pictures, converting to percents, and finding common denominators."

For each set of fractions below, circle the fraction that is greatfr, or if the fractions are equivalent, write " $=$ " in between them. For lach comparison give an explanation, other than converting to common denominators, for why the circled fraction is greater (or why the fractions are equivalent). Please make sure that you can explain each comparison in a "sense-making" fashion. *Calculators may not be used on this task.*
fractions to percents and decimals

Data collection

Setting (n=61)

- 3 researchers as instructors
- 3 institutions
- 4 undergraduate mathematics content courses

Enactment

- Worked in groups during class time
- Collected PSTs' written work prior to class discussion

Results ($\mathrm{n}=61$)

Fraction Comparison	Target strategy	\# of PSTs who answered $(\mathrm{n}=61)$	$\%$ of PSTs who answered correctly*	\% of PSTs who used the target strategy*	Responses using common denominators $(\%)$	Responses using conversions to decimals/percents $(\%)$
1$) 7 / 10$ vs. $8 / 9$	GLP	$52(85 \%)$	98%	6%	10%	10%
2$) 8 / 9$ vs. $12 / 13$	BVD [1]	$53(87 \%)$	85%	68%	0%	8%
3$) 24 / 7$ vs. $34 / 15$	BVB [3]	$43(70 \%)$	95%	77%	2%	5%
4$) 3 / 7$ vs. $6 / 11$	SNP; BVB [1/2]	$59(97 \%)$	98%	$8 \% ;$ 58%	3%	2%

*Percentages based on students who answered the problem

Results ($\mathrm{n}=61$)

Fraction Comparison	Target strategy	\# of PSTs who answered $(\mathrm{n}=61)$	\% of PSTs who answered correctly*	\% of PSTs who used the target strategy*	Responses using common denominators $(\%)$	Responses using conversions to decimals/percents $(\%)$
1) $7 / 10$ vs. $8 / 9$	GLP	$52(85 \%)$	98%	6%	10%	10%
2$) 8 / 9$ vs. $12 / 13$	BVD [1]	$53(87 \%)$	85%	68%	0%	8%
3$) 24 / 7$ vs. $34 / 15$	BVB [3]	$43(70 \%)$	95%	77%	2%	5%
4$) 3 / 7$ vs. $6 / 11$	SNP; BVB $[1 / 2]$	$59(97 \%)$	98%	$8 \% ;$ 58%	3%	2%

*Percentages based on students who answered the problem

Results (n=61)

Fraction Comparison	Target strategy	\# of PSTs who answered ($\mathrm{n}=61$)	\% of PSTs who answered correctly*	\% of PSTs who used the target strategy*	Responses using common denominators (\%)	Responses using conversions to decimals/percents (\%)
1) $7 / 10$ vs. $8 / 9$	GLP	52 (85\%)	98\%	6\%	10\%	10\%
2) $8 / 9$ vs. $12 / 13$	BVD [1]	53 (87\%)	85\%	68\%	0%	8\%
3) $24 / 7$ vs. $34 / 15$	BVB [3]	43 (70\%)	95\%	77\%	2%	5\%
4) $3 / 7$ vs. $6 / 11$	$\begin{gathered} \hline \text { SNP; } \\ \text { BVB [1/2] } \end{gathered}$	59 (97\%)	98\%	8% 58%	3%	2%
			Least used strategy		Frequent use of familiar procedures	
			Most did not use an explicit strategy:			
					One PST use	d BVB [3/4]

*Percentages based on students who answered the problem

Results ($\mathrm{n}=61$)

*Percentages based on students who answered the problem

Results (n=61)

Fraction Comparison	Target strategy	\# of PSTs who answered ($\mathrm{n}=61$)	$\begin{aligned} & \% \text { of PSTs } \\ & \text { who } \\ & \text { answered } \\ & \text { correctly* } \end{aligned}$	\% of PSTs who used the target strategy*	Responses using common denominators (\%)	Responses using conversions to decimals/percents (\%)
1) $7 / 10$ vs. $8 / 9$	GLP	52 (85\%)	98\%	6\%	10\%	10\%
2) $8 / 9$ vs. $12 / 13$	BVD [1]	53 (87\%)	85\%	68\%	0\%	8\%
3) $24 / 7$ vs. $34 / 15$	BVB [3]	43 (70\%)	95\%	77\%	2\%	5\%
4) $3 / 7 \mathrm{vs} .6 / 11$	$\begin{gathered} \text { SNP; } \\ \text { BVB [1/2] } \end{gathered}$	$59 \text { (97\%) }$	98\%	$\begin{array}{r} 8 \% \\ 58 \% \\ \hline \end{array}$		2%
	Answered by fewest number of PSTs		Most successful at eliciting target strategy		Discouraged use of familiar procedures	

*Percentages based on students who answered the problem

Results (n=61)

*Percentages based on students who answered the problem

Discussion of Goals

Goal 1: Discourage familiar algorithmic procedures

Discussion of Goals

Goal 2: Develop multiple fraction comparison strategies

Discussion of Goals

Goal 3: Successfully reason about fractions greater than one and with benchmark values other than one

Task © Masters

For the full task, modifications, and facilitation notes, please visit our website: www.mathtaskmasters.com
email: masters@mathtaskmasters.com

