Task 정 Masters

Modifying Children's Mathematical Tasks
 for Use in Content Courses for Prospective Elementary Teachers

Amy Hillen Dana Olanoff Rachael Welder
Kennesaw State University ahillen@kennesaw.edu
Widener University
CUNY - Hunter College dolanoff@widener.edu rachael@rachaelwelder.com
Ziv Feldman Jennifer Tobias Eva Thanheiser
Boston University Illinois State University Portland State University
zfeld@bu.edu
jtobias@ilstu.edu
evat@pdx.edu

Website: www.mathtaskmasters.com
Contact: masters@mathtaskmasters.com

Association of Mathematics Teacher Educators Annual Meeting
February 6, 2014

Children's Task: Comparing Fractions

Which Is Greater? (page 1 of 2 2)
Solve the problems below and explain or show how you
determined the answer.
1. Which is greater? $\frac{7}{10}$ or $\frac{3}{5}$
2. Which is greater? $\frac{7}{8}$ or $\frac{9}{10}$
3. Which is greater? $\frac{4}{3}$ or $\frac{3}{4}$
4. Which is greater? $\frac{3}{8}$

- What mathematical ideas does the task have the potential to elicit for children? For prospective elementary teachers?
- What would you need to consider and/or plan for in order to modify and implement the task with prospective elementary teachers?
- In what ways would you modify the task for this new audience, and why?

Taken from p. 21 of Russell, S. J., et al. (2008). Investigations in number, data, and space student activity book, Grade 5 ($2^{\text {nd }} \mathrm{ed}$.). Glenview, IL: Scott Foresman.

Modified Task for Prospective Teachers: Comparing Fractions

For each set of fractions below, circle the fraction that is greater (or if the fractions are equivalent, write " $=$ " in between them), and provide a "sensemaking" explanation for how you know. You may use pictures if that is helpful to you, but your explanation cannot rely solely on a picture. Notes:

- Calculators may not be used. Feel free to work on these problems in any order that makes sense to you.
- If you find yourself struggling with any of the problems, skip them and revisit them later.

1) $\frac{1}{2} \quad \frac{17}{31}$
2) $\frac{13}{15}$
$\frac{17}{19}$
3) $\frac{2}{7} \quad \frac{3}{8}$
4) $\frac{2}{17} \quad \frac{2}{19}$
5) $\quad \frac{15}{17} \quad \frac{19}{18}$
6) $\frac{25}{12} \quad \frac{31}{15}$
7) $\frac{4}{7} \quad \frac{9}{14}$
8) $\frac{7}{10} \quad \frac{8}{9}$
9) $\frac{11}{20} \quad \frac{19}{36}$
10) $\frac{3}{7} \frac{6}{11}$
11) $\frac{1}{4} \quad \frac{25}{99}$
12) $\frac{2}{9} \quad \frac{3}{8}$
13) $\frac{8}{9} \quad \frac{12}{13}$
14) $\frac{24}{7}$
$\frac{34}{15}$
15) $\quad \frac{18}{25} \quad \frac{16}{27}$

Children's Task: Algebra

Taken from p. 92 of Tierney, C., Nemirovsky, R., \& Weinberg, A. S. (1998). Changes over time, Grade 4. Palo Alto, CA: Pearson Education, Inc.

Children's Tasks: Rates and Ratios

122 Rate Tables

For each problem, fill in the rate table. Then answer the question below the table.
4. Bill's new car can travel about 35 miles on 1 gallon of gasoline. Gasoline mileage: 35 miles per gallon

Miles	35							
Gallons	1	2	3	4	5	6	7	8

At this rate, about how far can the car travel on 7 gallons of gas? \qquad miles
2. Jennifer earns $\$ 8$ for every 4 hours she helps out around the house.

At this rate, how much money does Jennifer earn per hour? \$
3. A gray whale's heart beats 24 times in 3 minutes.

At this rate, how many times does a gray whale's heart beat in 2 minutes? ___ times
4. Ms. Romero paid $\$ 1.80$ for 3 pounds of grapes.

Cost of grapes: 3 pounds for $\$ 1.80$

At this rate, how much do 5 pounds of grapes cost? \$

12.2 Rate Tables continued	Rate Tables continued							
5. Malia bought 6 yards of fabric for $\$ 15.00$. Cost of fabric: 6 yards for $\$ 15.00$								
Dollars						15.00		
Yards	1	2	3	4	5	6	7	8

At this rate, how much will $7 \frac{1}{2}$ yards of fabric cost? \$
6. Alden bought $\frac{3}{4}$ of a pound of cheese for $\$ 6$.

At this rate, how much will $1 \frac{1}{4}$ pounds cost? $\$$

Try This

7. The Jefferson family plans to sit down to Thanksgiving dimer at $\mathrm{f}: 00 \mathrm{P}$ P.M. They have
8. The Jefferson family plans to sit down to Thanksgiving dinner at $6: 00$ p.M.
an 18 -pound turkey. The turkey needs to cook about 20 minutes per pound.
a. At what time should the turkey go in the oven?
\square
b. Explain what you did to solve the problem.

124	Unit Prices			
Solve the unit price problems below. Complete the tables if it is helpful to do so. 1. A 12 -ounce can of fruit juice costs 60 cents. The unit price is \qquad per ounc				
Dollars				0.60
Ounces	1	3	6	12
2. A 4-pound bunch of bananas costs \$1.16. The unit price is __ per pound.				
Dollars				1.16
Pounds	1	2	3	4

3. A 5 -pound bag of apples costs $\$ 1.90$. The unit price is
A 5 -pound bag of apples costs $\$ 1.90$. The unit price is

Dollars				per pound.	
Pounds	1	2	3	4	5

4. Three pounds of salmon cost $\$ 21.00$.
a. The unit price is ___ per pound.
b. What is the cost of 7 pounds of salmon? \qquad
c. What is the cost of $9 \frac{1}{2}$ pounds of salmon?

Try This
5. Energy granola bars come in packages of 25 and cost $\$ 3.50$ per package. Super granola bars come in packages of 30 and cost $\$ 3.60$ per package. Which is, the better buy? Explain
\qquad
320

Taken from p. 312-313, 320 of Bell, M. et al. (2007). Everyday Mathematics student math journal, Grade 4 (vol. 2). Chicago, IL: Wright Group/McGraw-Hill.

Children's Tasks: Whole Number Operations

Taken from p. 211, 214, 220 of Bell, M. et al. (2007). Everyday Mathematics student
math journal, Grade 3 (vol. 2). Chicago, IL: Wright Group/McGraw-Hill.

Children's Task: Number Theory

Discu8s
Mr. Moreno challenged his class to find different ways to name 144 as a product of smaller numbers.

"I found that one way to factor 144 is to use two factors such as 2×72 or 4×36," shared Romesh.
I. Write 144 as a product of two factors in as many ways as you can.
"You can also write 144 as the product of more than two factors, such as $2 \times 2 \times 36$ or $2 \times 3 \times 4 \times 6$," added Alexis.
2. Find at least two other ways to write 144 as the product of three or more factors.

Taken from p. 360-361 of Wagreich, P. et al. (2003). Math Trailblazers, Grade 5 (2 $2^{\text {nd }}$ Ed.). Chicago, IL: Kendall/Hunt Publishing Company.

Please do not circulate or cite without permission.

